上世纪80年代,智能家居的概念初步具备雏形。到近两年,随着互联网的
发展,智能手机终端的出现,智能家居逐渐从概念走向大众生活。目前,我国智能家居行业正在进入快速成长期,市场分析报告预计,该行业将以年均19.8%的速率增长,在2015年产值达1240亿。
市场前景如此广阔,但目前大多数厂商没有真正做出卓有成效的产品,导致这一现象的关键在于大数据。有了终端,有了互联网,智能家居的轮廓基本能够描绘出来。但这些还只能实现家居的“互联化”而非“智能化”。大数据才是真正实现从家居“互联化”迈向“智能化”的关键。可以说,没有大数据支撑的智能家居,还只是一群智能伪军。
小鲸认为,大数据并非数字的堆积,它分为三个层次,普遍化、差异化和动态化。最终目的应当是一个动态的调整,以达到智能化的要求。
第一,大数据要具备足够的积累,了解大众的普遍需求。这一功能要求,智能家居要采集足够多的数据样本,以分析大众对某一款设备的普遍接受范围。比如,大众普遍适应的室温、空气湿度、吸尘器的档位等等,在初始设定时,达到智能化的效果。这一方面,要求采集的样本足够多。因此,家电行业传统的巨头往往更容易占据优势。比如海尔最近发布的星盒,就是一款智能温控器,它依托的是海尔在家电领域多年以来的数据积累。根据数据的积累,找到最适合大众用户感受的温度。而这款星盒作为智能家居领域的先锋,后续将会向起他智能家居拓展,而海尔在家电领域多年来的积累,能够更加提升智能化水平。而这是大数据的第一层意义。
第二,大数据要在数据积累的同时,满足个性化和差异化的需求。大众化只能适用于普遍的规律,而不同用户的实际需求是不同的。这需要大数据具备“学习”能力,能够根据用户的具体习惯,形成差异化的设定。同样以星盒为例,其智控模式,能够自动学习用户使用空调的习惯,根据实时的地区、月份、室内外温湿度、白天/夜晚等因素综合判断,通过星盒自学习算法,经过一周用户习惯的学习,生成用户专属的作息曲线,这是大数据“学习”的典型案例。此外,星盒还具备多种模式可供选择,比如好睡眠模式,能够根据用户所在地区和室内外温湿度环境,以及用户之前一周睡眠时的使用习惯记录,自动生成用户专属的睡眠曲线运行。大数据实现差异化的设定,是智能家居的第二个层级。
第三,大数据需要做到动态调整。用户的需求存在差异,不仅是指个体之间的差异,还包含在个体内部,不同环境下的不同需求。这就要求,大数据能够根据差异化的需求,进行动态调整。海尔星盒在控制室内湿度时,能够实时检测室内湿度,当湿度超过一定范围时,空调会自动开启除湿模式。爱宝宝模式能够根据用户所处地区、宝宝年龄、实时室内外温湿度等环境,经星盒环境数据中心计算,得出适合宝宝的温湿度,并进行动态优化。动态调整是大数据在智能家居领域第三个层次的应用。它能够最大限度地减少用户人工调整,实现智能化。
评价:
智能家居如果离开大数据,是远远无法真正实现“智能化”,这也是目前市场上诸多开发者只能停留在概念层次而无法达到实际操作层次的原因。市场前景十分广阔,但只有真正实现了大数据的普遍化、差异化和动态化的厂商,才能抢占市场,构建生态系统。
欢迎光临 智能家居 (https://bbs.mywll.com/) | Powered by Discuz! X3.4 |