1. Future is coming.
2. You CAN never image Future by linear or traditional way of thinking.
去年夏天,我和来自硅谷的著名speaker Steve Hoffman第一次畅聊对未来的看法,虽然来自不同的国家和不同的文化,然而我们对于未来的见解却出奇的相似。畅谈之中,Steve举的一个例子让我记忆深刻,他说他在(上世纪)七八十年代的同学中,学习最好的和家庭条件最好的一批精英,有很多都去搞飞行汽车了,因为他们认为那是未来的方向。然而一晃三四十年过去了,当时沉重的实验室计算机已经摇身一变成了Laptop和Smart Phones,因特网也已经遍布全球,但汽车仍然在地上跑,翅膀却一直没有插上去。
智能驾驶是AI应用的一个主战场,然而对此我却始终不能认同。我是一个北京的老司机,在北京甚至国内开过车的人想必都能理解,红灯停绿灯行对于你面前的行人和骑士们来讲只是停留在书本上的知识,然而中国的交通课堂上又有一个重点叫做保护弱势群体。所以如果你有美国开车的习惯比如过路口加速,直行不顾对面左转,打灯就可以并线等等在中国一定要小心,一不留神就会出现事故。曾经有一个荷兰的资深交通学家来中国解决交通问题,声称一年内一定搞定回国,结果待了三年后精疲力竭地离开并最后甩下一句话“That is China’s problem!”没错,这就是我们的交通,从北京的国贸到上海的静安寺,如果你没练出车推行人缓步走的功夫基本上就是寸步难行,所以在中国要想实现智能驾驶,那汽车基本上要具备跟人一样的高等智能,学习反应分辨率必须要细到厘米级,考虑交通规则和简单的突发情况是远远不够的。谷歌的智能汽车去年突破了300万公里的行驶里程,然而在强智能和超智能的界线面前仍然不足一提,目前的AI能制造出Alpha Go打败李世石惊动全球,但是离说第4局是故意输的这种超智能还有很远的距离(甚至于没有学习对象和可量化的锻炼过程)。所以到目前为止,智能驾驶的应用大多面向于慢速定制路线的行驶场景,使用在于降低人力成本和复杂轨道式交通成本,从单个项目来讲虽然具备一定应用价值,而从大行业来讲已经失去了智慧交通产业的意义(并不能对技术或商业模式给出行业溢价)。